Efforts towards a more collaborative and anticolonial research, co-constructing mycorrhizal research in the Atacama Desert

Francisco Mondaca¹, Oriana Mora¹, Faviola González¹, César Marín³, Adriana Corrales⁴, Daniela Soto Hernández⁴*

- ¹ Unidad de Medio Ambiente del Consejo de Pueblos Atacameños (CPA), Chile.
- ° Santo Tomás University, Chile.
- ³ Amsterdam Institute for Life and Environment (A-LIFE), Section Systems Ecology, Vrije Universiteit Amsterdam, the Netherlands.
- ⁴ Society for the Protection of Underground Networks (SPUN).
- *E-mail: daniela@spun.earth

In December 2023 we set out on a expedition joint between Society for the Protection of Underground Networks (SPUN) and the Environment Unit of the Council of Atacameños Peoples. SPUN is an international nonprofit scientific organization dedicated to the study and conservation of mycorrhizal fungi. The Indigenous Association Council of Atacama Peoples (CPA) is an organization of traditional authorities leaders from the 18 communities of the "Atacama La Grande" territory in the Salar de Atacama basin (in northern Chile). Currently, the CPA has an Environment Unit which constituted is of environmental representatives

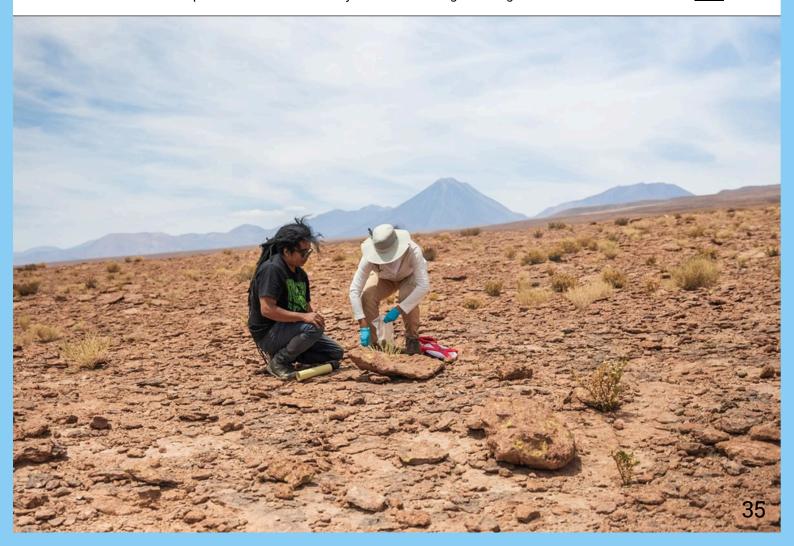
from the same communities and professionals, mostly from the Lickanantay community, who ensure the protection of the water ecosystems of and the Lickanantay territory in the Salar de Atacama basin and in the highlands of the Andes Mountain Range. For more than 30 years, this Indigenous organization has been the entity that has ensured the defense and interests of the territory, and particularly since 2015 the work expanded to fulfill environmental compromises support the communities that are part of it.

This expedition was neither the beginning nor the end of the joint work: it was the meeting space to

Photos of the SPUN expedition to the Atacama by Mateo Barrenengoa & Diego Fuentes - read more about it here.

better understand the diversity of mycorrhizal fungi the in Lickanantay territory, what in is deemed today as Antofagasta Region of Chile". This territory is part of the Lickanantay peoples ancient lands, way before Chile existed as an State. For this purpose, a transdisciplinary team was brought together to share knowledge from the expert Lickanantay Western and scientific perspectives the anthropological, mythological,

ecological, and local knowledge levels.


The collaboration began in March 2023 after defining the common interest in exploring mycorrhizal fungal biodiversity of the middle zone of the Atacama Desert, about which very little or practically nothing is known in terms of the biodiversity and functioning of mycorrhizal fungi (Marín et al. 2022). The information gap and the need to better grasp the role of this group of fungi in these

ecosystems gave rise to a project that involved several phases. Regarding agricultural systems, the CPA's Environment Unit was interested in better understanding the effect of traditional flood irrigation the soil when on compared to newer technical irrigation methods. As drought becomes an increasingly menacing problem, particularly in this region, new irrigation technologies can serve to maintain higher levels of yield production. This is particularly

important since arbuscular mycorrhizal fungi have been shown to increase grain yield at a global scale (Zhang et al. 2019) and drought tolerance in crops (Mathimaran et al. 2017).

This collaboration is part of a series of efforts to move beyond dominant ways of doing extractive and colonial science and instead co-construct science. As Whitt (2009), Kimmerer, (2020), Trisos et al. (2021), Ferdinand and Smith (2022), and Hirschfeld et al. (2023), have already highlighted,

Photos of the SPUN expedition to the Atacama by Mateo Barrenengoa & Diego Fuentes - read more about it here.

the scientific practice of ecology is embedded in deeply colonial roots. This practice is particularly strong in global soil research, "where scientists from wealthier nations collect soil samples from less-developed countries, take the samples back to their country for analysis and publish the results with little involvement of local researchers" (Minasny et 2020). Thus, it is urgent decolonize what we consider knowledge", the "expert access to science -today highly concentrated in white male scientists from the Global North (Crisos et al., 2021)- and the motivations and methods to carry research and scientific out expeditions.

To begin the dialogue, the first phase consisted of workshops explored how where we sciences understand biological soil, its components, and its relationship. effects. and interactions with the Fungi kingdom. In turn, these spaces allowed the exchange of ancestral knowledge about these concepts and Atacama Desert ecosystems, where the need to challenge the

dominant references of what "poor" constitutes ecosystems and soils, and the quantitative bias of approaches to "biodiversity" became evident. For the people of the desert, these are not "poor" but rather ecosystems, the expression of sacredness abundance, where they have lived and thrived for thousands of vears. As such, it was vital to reframe Western science terms so that thev could adapt to understanding each territory in its and thus context. encourage respectful dialogue between different knowledge systems.

In this way, the expedition carried had several different out characteristics associated with the recognition of what it means to carry out scientific work in ancestral indigenous territories. We consider it essential with the connect Indigenous organizations of the territories and follow their protocols. Environment Unit of the CPA protocols works with several according to what each community has defined for entering their specific territories, along with the ways in which research should be carried out and

information should be safeguarded. Thus, for all there sampling points, was done previous work by the Environment Unit of the CPA; this previous work allowed us to contextualize the communities about the research to be carried out and the samples and protocols to implement (that is: what, why, how to research sampling their territories). in Similarly, we worked together to define when the sampling could be carried out, and who would attend

from the Environment Unit of the CPA, SPUN, and members of each community.

The sampling sites were defined primarily by the Environment Unit of the CPA and consulted by the environmental representatives of the communities involved, given the work that they already carry out in the territory and the existing sampling points that the Unit constantly monitors, regarding water and biodiversity, among others. This not only points out local places of interest but also

Photos of the SPUN expedition to the Atacama by Mateo Barrenengoa & Diego Fuentes - read more about it here.

provides consistent information with a greater temporal scope. When carrying out the expedition, this not only allowed us to interact on the basis of respect for the ancestral practices and relationship with the territory, but also allowed us to have local experts who not only knew the species of fauna and flora that were present in each site, but also had knowledge regarding social, climatic, and ecological changes and challenges that had affected those areas over time (Soto Hernández, 2023).

that for Considering the Lickanantay - Atacameños, the relationship they have with their environment is important, respecting Puri (water), tutelary hills, and the Patta Hoiri (Mother Earth) was key in the sampling process itself. As such, we followed protocols to better relate with the non-human beings, asking permission from Mother Earth to take samples therefore, ensuring the health of the human group and the nonhuman beings each in alongside the effectiveness of our expedition. Part of the protocols involved the accompaniment of local community members of the different places where the

samples were taken, with the involvement of those who know their territory best, and with the to commitment return the information to the communities. At the moment, we are processing the samples. So far, we can say that 35 out the 41 soil samples collected showed high DNA concentration - something very good and surprising for the driest place on Earth! Subsequently, the scientific analysis work will give way with to meetings Environment Unit of the CPA to define what results are of interest to them and how to communicate them in ways that are accessible relevant to the CPA and communities. Thus, this experience constitutes a blueprint and an invitation to the scientific community to retrace the colonial of the scientific practices disciplines and build new ways to with the local engage communities that have ancestrally inhabited territories of scientific interest. It is possible that, in this new ecology of knowledge, we will learn much more about ecology that we seek to expand.

ACKNOWLEDGEMENTS

We are very grateful for the financial support received from SPUN and the CPA to carry out this expedition and research. We are also sincerely thankful to the communities of Socaire, Toconao, Solor, Machuca Cucuter, and Catarpe for their support during the expedition, the knowledge shared, and commitment to the sampling process: nothing would have been possible without you. Many and special thanks documentalists Mateo Barrenengoa and Diego Fuentes for a wonderful documentation of this expedition.

REFERENCES

Cronin, M.R. et al. (2021) Antiracist interventions to transform ecology, evolution and conservation biology departments. Nature Ecology & Evolution 5: 1213–1223.

https://doi.org/10.1038/s41559-021-01522-z

Ferdinand, M. and Smith, P.A. (2022) Decolonial ecology: thinking from the Caribbean world. Cambridge: Polity Press (Critical south).

Hirschfeld, M.N.C., Faria, L.R.R. and Fonseca, C.R. (2023) Avoid the reproduction of coloniality in decolonial studies in ecology. Nature Ecology & Evolution 7: 306–309.

https://doi.org/10.1038/s41559-022-01971-0

Kimmerer, R.W. (2020) Braiding sweetgrass: indigenous wisdom, scientific knowledge and the teachings of plants. London: Penguin Books (Penguin ecology).

Mathimaran, N., Sharma, M. P., Mohan Raju, B., & Bagyaraj, D. J. (2017). Arbuscular mycorrhizal symbiosis and drought tolerance in crop plants. Mycosphere 8: 361-376.

Marín, C., Rubio, J., Godoy, R. 2022. Chilean blind spots in soil biodiversity and ecosystem function research. Austral Ecology 47: 1372-1381. https://doi.org/10.1111/aec.1323

Soto Hernández, D. 2023. The energy transition and lithium extraction in Chile: Decolonising resource-making in the Salar de Atacama basin. Doctoral thesis on International Development. University of Sussex.

Trisos, C.H., Auerbach, J. and Katti, M. (2021). Decoloniality and anti-oppressive practices for a more ethical ecology. Nature Ecology & Evolution 5: 1205–1212. https://doi.org/10.1038/s41559-021-01460-w

Whitt, L. (2014) Science, colonialism, and indigenous peoples: the cultural politics of law and knowledge. 1. paperback ed. New York: Cambridge Univ. Press.

Zhang, S., Lehmann, A., Zheng, W., You, Z., & Rillig, M. C. (2019). Arbuscular mycorrhizal fungi increase grain yields: A meta-analysis. New Phytologist 222: 543-555.